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Abstract—The dynamic stiffness matrix for horizontally circula? curved members of constant
section is presented for determining natural frequencies of continuous curved beams undergoing
out-of-plane vibrations. A three-span curved beam is provided to illustrate the application of the
proposed method and to show the effects of transverse shear, rotary inertia and the opening angle
of the arc on the natural frequencies of the beam.

1. INTRODUCTION

The dynamic response of curved beams vibrating out of their initial plane of curvature is
of interest in many fields of engineering. Den Hartog{l] employed the Rayleigh-Ritz
method to find the lowest natural frequency of circular arcs with clamped ends. His work
was extended by Volterra and Morell{2, 3] and Wang|4] for vibrations of non-cirular arcs.
Using the equations of motion derived by Love, Ojalvo[5] studied the coupled twist-
bending vibrations of incomplete rings. Recently, Wang et al.[6] introducted the dynamic
slope-defiection equations for finding the natural frequencies of continuous circular curved
beams.

The elementary Bernoulli~Euler theory of flexural vibrations of beams has been known
to be adequate for relatively slender beams at lower modes of vibation. For short and
thin-webbed beams and for beams where higher modes are required, the Timoshenko
theory[7] which considers the effects of shear deformation and rotary inertia provides a
better approximation to the actual beam behavior.

There has been a great deal of work done on vibrations of curved beams according
to the Timoshenko theory. The in-plane vibrations of circular rings with shear and rotary
inertia effects being included were treated by Philipson[8]. Seidal and Erdelyi[9] studied
the in-plane vibrations of non-thin rings subjected to the effects of bending, shear and
extensional strain energies, together with translational and rotational kinetic energies. The
effects of shear and rotary inertia on both in-plane and out-of-plane vibrations of rings
were analyzed by Rao and Sundararajan[10, 11). More recently, Wang and Guilbert[12]
investigated the in-plane free vibrations of multispan curved beams considering rotary
inertia and shear.

Of the studies just mentioned, only the effects of shear and rotary inertia on out-of-plane
vibrations of simple curved beams have been considered. The purpose of this paper is to
present a general method for the analysis of continuous curved beams including both
rotary inertia and shear effects. In the present work, the dynamic stiffness matrix for a
horizontally circular curved member in terms of rotations, angles of twist and vertical
displacements has been derived. An example of a three-span curved beam undergoing
out-of-plane vibrations is provided to illustrate the application of the proposed method
and to demonstrate the effects of shear deformation, rotary inertia and the opening angle
of the arc on the natural frequencies of the beam.

2. DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

Figure 1 shows the out-of-plane, small vibration of a horizontally circular curved
element with the effects of damping and warping neglected. The expressions for the
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Fig. 1. Element of a horizontally curved member subjected to forces and moments.

bending moment, M, and twisting moment, T, of a curved beam can be expressed as [13)

wen-2(s-%) 0
r6.0-3 (v +35) @

where EI is the flexural rigidity, C the torsional rigidity, ¢ the bending slope, ¢ the angle
of twist, R the radius of a circular member, § the angular coordinate, and ¢ the time.
The total angle between the deformed and undeformed center lines of the beam as
shown in Fig. 2 is [7]
1dy

§5§=¢+B (3)

Fig. 2. Strain-displacement relation on a typical cross section.
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where y is the vertical displacement and § the angular deformation due to shear. Thus,
the transverse shear force ¥ may be written as[14]

_ 1 dy
V(0,t)=kAGB = kAG (Eé@ - ) 4)

where £ is the cross-sectional shape factor, 4 the cross-sectional area, and G the modulus
of rigidity.
The equilibrium conditions of the curved element shown in Fig. 1 give

ov %y
EE—VARK—O (5)
oM %y
55— PR+ T+)yR>5=0 (6)
- T
M-=5=0 )

where y is the mass per unit volume and / the moment of inertia of cross section.
From eqns (1)<(7) one obtains

3y, 0 ¥y _ 7R2+yR2 3 (7RY\ %
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(1 k:g;2)¢+(kAG)%2:¢

=( EI )6’y 1dy ( yEI )6’y EI(1 +p) 0¢

¥AGR)3° T R36 \kAG'R 3007~ kAGR® 36 0
where p = C/(EI) is the stiffness parameter.

Assuming that the curved member is under the action of free vibration with a frequency
p and letting

y(0,0)=Y(6)e” (11)
$(6, 1) = &(0) ™ (12)
¥, 0)="0)e" (13)

where i =./— 1, and Y, & and ¥ are the normal functions for y, ¢ and ¥, respectively.
Substituting the above equations into eqns (8)—(10) and omitting ¥ yields

YVI+ (2 + b3r? + bzsz)ylv+ (1 — b= ber/p + 2b%s? + blrzsz)yn

+ (b¥p + bis* — b4} p)Y =0 (14)
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I , _
oR=—"_ {Y’V + (—jﬁ’? by b2s2> Y+ (l—“—" bis?— b4 b‘rzsz) Y} (15)
I+p p p

’ !
¥R = (W) {YV+ Q+ b7+ b)Y + (sz R pye + b‘r’sZ)Y'}
(16)

where b, r, s represent effects of bending, rotary inertia and shear deformation, respectively,
and are given by

b*=yAR*p*(EI), r*=1I/(AR?, s*=EI|(kAGR?Y (17

and the primes for Y indicate differentiation with respect to 8.
The general solution of eqn (14) takes the form of

Y@) =Y ¢, ()

ne}

where ¢, are constants to be determined from boundary conditions, and A, are the roots
of the following auxillary equation

A4+ Q4+ 62+ b%H)A 4+ (1 — b2 — br¥p + 2b%5% + bris)A?
+ (bYp + b2~ biristp) = 0. (19)

Substituting eqn (18) into eqns (15) and (16) yield

PO)R = i C W, €0 20

nwl

Y(@O)R = i €2, €0 @y

A=}

where

W, = P {;_”4 + (l_+3£ + b2 4+ b2s2>).,,2 + (M bist~ b4 b‘r%’)} (22)
1+p p p

2
z7,= ("—_pi”i“‘:) {z: + 2+ b+ b3YA + (2b2s2 —bi— Ei”f + b‘r’s2>i,,}. (23)

ERERE -

3. DYNAMIC STIFFNESS MATRIX FOR HORIZONTALLY CURVED MEMBER
Consider a horizontally circular curved member of constant cross-section subjected to

harmonic displacements ¥, ¥,, ¢,, #,, Y, and Y, as shown in Fig. 3.
Let

M@, 1)=M(6)e" (24)
TO,1)=T@)e” 23)
@, t)=vV(@)e” (26)

where M, T and V are the normal functions for M, T and ¥, respectively.
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Fig. 3. Positive displacements, forces and moments with ¢* omitted.
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Introducing eqns (11)—(13) and (24)—(26) into eqns (1), (2) and (4) and omitting e* give

M@)= -Ek! {26)— ¥6)}

T(0)= 3 (@) + @)

V@)= % {Y’'(6) - R¥Y(9)}.

Substituting eqns (18), (20) and (21) into the above equations yield
6
M(6) =%I Y. cm, ett
nwm]

[
T(6) = % .‘Y‘l e,

6
V)= -ﬁ—{ Y cp et

LL D]

where

m,=w,— A.,‘Z,,, L= p(zn + Anwn)s v, = ()'n - 2.)/52.
With reference again to Fig. 2, the boundary conditions are

Y,=¥0), ¥,=¥(@)
2, =2(0), &,=0() )
Yo=Y(0), ¥,=Y(a)

@7

(28)

(29)

(30)

@3n

(32)

(33)

(34)
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Similarly, the bending and twisting moments and shear forces at the two ends may be
written as

My=M©0), M,,= —M(x)
T, =T(0), Tho=—T(a)
Va=V(0), Ve=V(a)

(33)

The substitution of eqns (18), (20), (21) and (30)~(32) into eqns (34) and (35) will yield
the following results in matrix forms:

D=AX (36)
EI
F= (F BX 37
where
KX [M,/R ¢, ]
Y.R M, /R c
D= &.R Fe T,/R X =% (38)
R T,./R Cs
Ya an Cs
L Y, b_| L Vba ] Ce
i z, 2 z3 2, 2 2, 7
zyeM z, et zyett z e zoetst zg €4
w w w W, w W
A= 1 2 3 4 5 6
wi et w e we'® w,e wgett wger (39)
1 t 1 1 1 1
eA'..a eizu ei;a ei‘a e,isu e/l@!
m, m, m, m, ms mg T
—m, &% — my e — my e — m, e — mge® — mg el
) L, t ty I 1
B= -1 e}.,a -1 ei.za -t e/‘.;ﬂ -t e;‘.‘a — 1 ei;a — 1 ei.(,a (40)
U vy U 2 Vs Vg
v et p et pe  pet pett gl J

—

Eliminating X from eqns (36) and (37), the following equation is obtained:
F=SD (41)

where S, the dynamic stiffness matrix for a horizontally circular curved member, is given
by

[- i $12 813 Sie Sis S16

S §22 L71) S S2s S

S= Sn S S Sw S S | (ﬂ) BA-! 42)
Sa Se2 54 Ses Sas S4 R? )
Sst Ss2 Ss3 Ss4 Sss

Ss6
Se1 Se2 Se3 Se4 Ses Ses _j

4. NUMERICAL EXAMPLE
A three-span symmetrical circular curved beam A-B-C-D of constant section
undergoing out-of-plane vibrations as shown in Fig. 4 is analyzed for natural frequencies.
The beam is resting on rigid, non-twisting supports equally spaced at an angle & with the
two extreme ends A4 and D hinged.
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A B —m——=ae_ ¢ D
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Fig. 4. Three-span circular curved beam.

Since no deflection or twist is allowed at the joints, each joint will have a rotation only.
The equilibrium conditions at joints 4, B, C and D give

M,gs:—‘o, M3,4+M33=0, Mcg+Mcg=0, MDC-T-O. (43)
From egns (41) and (42) we have.
M /R =5, R + 5,¥sR l
MR =5, ¥ R + 5,¥»R
Mpc/R =5, ¥R + 5, ¥R
b (44)
Mcp/R = 5, ¥R + s ¥ R
MCD/R = SHWCR -+ S;z'pgR

MD(_'/R = s:; ‘pcR + Szzl.l’pR-

Upon substituting eqns (44) into eqns (43), a system of simultaneous equations in the
following matrix form is obtained:
LT S12 0 0 .PAR
Sy Sutsy sy 0 || WeR
0 sy Su+sy syl PR
0 0 S21 S PDR‘-
Setting the determinant of the stiffness matrix in eqn (45) to zero gives the frequency
equation as

(45)

[T o T o I ]

s Sz 0 0

52 S+ 8 Sz 0 =0 46
0 821 Sn+Sn 512 ) (46)
0 0 SZI Sn

For a given curved beam with r and s known, the values of b can be computed from
eqn (46). In order to show the effects of shear deformation, rotary inertia and the opening
angle of the arc on the natural frequencies of the beam, the values of p and k are assumed
to be 0.77 and 0.89, respectively, for a beam of solid circular section with Poisson’s ratio
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Fig. 5. Variation of b with a for a three-span curved beam. , P =0; ————, r =0.05,

u = 0.3[15). Thus s/r = /E/(kG) = 1.7. The results of b vs « for r = 0 and 0.5 for the first
five modes, with a varying from 30 to 90°, are plotted in Fig. 5.

5. CONCLUSIONS

The general matrix formulation for out-of-plane vibrations of circular curved members,
including the effects of shear deformation and rotary inertia, has been presented for use
in the determination of the natural frequencies of continuous curved beams. A three-span
curved beam undergoing out-of-plane free vibrations is given to illustrate the application
of the proposed method. From the results shown in Fig. §, it is seen that the effects of
shear deformation and rotary inertia are more important with increasing mode numbers
and decreasing opening angles of the arc. For high modes the curves indicate that an
increase in reduction of the ratio of natural frequencies between r =0 and r = 0.5 as high
as 409, is possible.
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