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AIJstract-The dynamic stiffness matrix for horizontally circulat curved members of constant
section is presented for determining natural frequencies of continuous curved beams undergoing
out-of-plane vibrations. A three-span curved beam is provided to illustrate the application of the
proposed method and to show the effects of transverse shear, rotary inertia and the opening angle
of the arc on the natural frequencies of the beam.

1. INTRODUCTION

The dynamic response of curved beams vibrating out of their initial plane of curvature is
of interest in many fields of engineering. Den Hartog[l] employed the Rayleigh-Ritz
method to find the lowest natural frequency of circular arcs with clamped ends. His work
was extended by Volterra and Morell [2, 3] and Wang[4] for vibrations of non-cirular arcs.
Using the equations of motion derived by Love, Ojalvo[S] studied the coupled twist
bending vibrations of incomplete rings. Recently, Wang et 01.[6] introducted the dynamic
slope-deflection equations for finding the natural frequencies ofcontinuous circular curved
beams.

The elementary Bernoulli-Euler theory of flexural vibrations of beams has been known
to be adequate for relatively slender beams at lower modes of vibation. For short and
thin-webbed beams and for beams .where higher modes are required, the Timoshenko
theory[7] which considers the effects of shear deformation and rotary inertia provides a
better approximation to the actual beam behavior.

There has been a great deal of work done on vibrations of curved beams according
to the Timoshenko theory. The in-plane vibrations of circular rings with shear and rotary
inertia effects being included were treated by Philipson [8]. Seidal and Erdelyi [9] studied
the in-plane vibrations of non-thin rings subjected to the effects of bending, shear and
extensional strain energies, together with translational and rotational kinetic energies. The
effects of shear and rotary inertia on both in-plane and out-of-plane vibrations of rings
were analyzed by Rao and Sundararajan[IO, II]. More recently, Wang and Guilbert[12]
investigated the in-plane free vibrations of multispan curved beams considering rotary
inertia and shear.

Of the studies just mentioned, only the effects of shear and rotary inertia on out-of-plane
vibrations of simple curved beams have been considered. The purpose of this paper is to
present a general method for the analysis of continuous curved beams including both
rotary inertia and shear effects. In the present work, the dynamic stiffness matrix for a
horizontally tircular curved member in terms of rotations, angles of twist and vertical
displacements has been derived. An example of a three-span curved beam undergoing
out-of-plane vibrations is provided to illustrate the application of the proposed method
and to demonstrate the effects of shear deformation, rotary inertia and the opening angle
of the arc on the natural frequencies of the beam.

2. DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

Figure I shows the out-of-plane, small vibration of a horizontally circular curved
element with the effects of damping and warping neglected. The expressions for the
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Fig. I. Element of a horizontally curved member subjected to forces and moments.

bending moment, Si, and twisting moment, t, of a curved beam can be expressed as [13]

- EI ( at/!)M(O,I)=/i tP - ao

c ( atP )t(O, t) = R t/! + 00

(I)

(2)

where EI is the flexural rigidity, C the torsional rigidity, t/! the bending slope, tP the angle
of twist, R the radius of a circular member, 0 the angular coordinate, and t the time.

The total angle between the deformed and undeformed center lines of the beam as
shown in Fig. 2 is [7]

I oy
--=t/!+PRae

Fig. 2. Strain-displacement relation on a typical cross section.

(3)
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where y is the vertical displacement and p the angular deformation due to shear. Thus,
the transverse shear force V may be written as[14]

_ (lOY )V(O, t) = kAGp = kAG Rof) - 1/1 (4)

where k is the cross-sectional shape factor, A the cross-sectional area, and G the modulus
of rigidity.

The equilibrium conditions of the curved element shown in Fig. I give

oV iJ2y
of) - yAR ot2=0

olJ _ VR + t + ylR 0
2

1/1 == 0
of) ot2

_ ot
M--==Oof)

where "I is the mass per unit volume and I the moment of inertia of cross section.
From eqns (1)-(7) one obtains

06y 04y 02y (YR 2 YR 2) 06y (y 2R4) 06y
of)6 + 2 004+ 002== E + kG of)40t2- EkG 0020t4

(
2YR2_ yR2 _ "iAR4)~ (y

2R
4

) 04y (YR 2 YAR
4
)02y

+ kG pE EI of)20t2+ pEkG ot4+ kG + pEl ot2

,.I.,R == _p_ {04y +(I + 2P) 02y _ (YR
2+YR

2
)~

'I' I + P 004 P 002 E kG 0020t2

+ ("1 2
R

4
) 04y + (YAR

4
_ I + 2p 1R2 ) 02y}

EkG ot4 EI p kG ot2

(5)

(6)

(7)

(8)

(9)

(10)

where p == CI(EI) is the stiffness parameter.
Assuming that the curved member is under the action of free vibration with a frequency

p and letting

y(O, t) == Y(O) elpl

4>(0, t) == ct>(O) eip1

1/1 (0, t) == 'P (0) elpl

(11)

(12)

(13)

where i == .;-::t, and Y, ct> and 'P are the normal functions for y, 4> and !/It respectively.
Substituting the above equations into eqns (8)-(10) and omitting elpf yields

(14)
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where b, r, s represent effects of bending, rotary inertia and shear deformation, respectively,
and are given by

and the primes for Y indicate differentiation with respect to O.
The general solution of eqn (14) takes the form of

6

Y(O) = L. Cn eoi
•

8

n-I

(17)

(18)

where en are constants to be determined from boundary conditions, and An are the roots
of the following auxiliary equation

).6 + (2 + b2r2 +b2s2»).4 +(I _ b2 _ b2r2jP + 2b2s2 + b4r2s2»). 2

+ (b 2lp + b2s2 - b4r2s2lp) =O.

Substituting eqn (18) into eqns (15) and (16) yield

6

<P(8) R = L CnWnei.·8
n-I

6

lfI (0) R = L. CnZn eoi
•
8

.-1
where

(19)

(20)

(21)

3. DYNAMIC STIFFNESS MATRIX FOR HORIZONTALLY CURVED MEMBER

Consider a horizontally circular curved member of constant cross-section subjected to
harmonic displacements lfIQ, lfIh, <PQ, <Ph' YQ and Yh as shown in Fig. 3.

Let

M(O, t) =M(0)eiP1

1(0, t) = T(O) eipt

1'(9, t) = V(O) eipl

where M, T and V are the normal functions for ~, ., and 1', respectively.

(24)

(25)

(26)
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Fig. 3. Positive displacements. forces and moments with ei" omitted.

Introducing eqns (11)-(13) and (24)-(26) into .eqns (1), (2) and (4) and omitting eipl give

M(B) == e; {(f)(B) - "'(B)}

T(B) == ~ {"(B) + (f)'(B)}

V(B) == k~G {Y'(B) - R"(B)}.

Substituting eqns (18), (20) and (21) into the above equations yield

EI 6
M(B) == Ii} L c"m. e.i,,8.-1

EI 6
T(B) == R2 L C.I. ~8.-1

EI 6
V(B) == RJ L C.V. eA·8.-1

where

m. == w. - A-.r., I. == p(z. + ;"'w.), V. == ()." - Z.)/S2.

With reference again to Fig. 2, the boundary conditions are

"II == "(0), "b == "(IX)}
(f). == (f)(O), (f)b == (f)(tX) .

Y. == Y(O), Yb == Y(IX)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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(35)

Similarly, the bending and twisting moments and shear forces at the two ends may be
written as

Mab = M(O), Mba = -M<rx.)}.
Tab = T(O), Too = - T(rx.)
Vab = V(O), VIHI = V(rx.)

The substitution of eqns (18), (20), (21) and (30)-(32) into eqns (34) and (35) will yield
the following results in matrix forms:

where

D=AX

'PaR MablR CI

'PbR MIHIIR C2

D= tPaR F= TablR X= C3

tPbR TIHIIR C4
Ya Vab Cs
Yb VIHI C6

Zl Z2 Z3 Z4 Zs Z6

ZI eA1" Z2 eA
2" Z3 f'l" Z4 eA." Zs eAS" Z6 e4"

A= WI W2 W3 W4 Ws W6

WI eA," W2 eA2" W 3 f'J" w4 e
A
." wse

AS
" w6 e4"

1 1 I I I 1
eA1" eAz" eAJ" eA." eAS" e4"

(36)

(37)

(38)

(39)

B=

m l m2 m3 m 4 m s 1'h6

- m, eA," - m2 e l 2"_ m3 ell"_ m4 e"" - m s eAS" - m 6 e4"
II 12 13 14 Is 16

- II eA1" - 12 e
i
'2" - 13 ei'l" - 14 e i.•" - Is eAS" - 16 ei./p

VI V2 V3 V4 Vs V6

VI eA1" V2 eAz" V3 ei.l" V4 e i.•" Vs eAS" V6 e4"

(40)

Eliminating X from eqns (36) and (37), the following equation is obtained:

F=SD (41)

where S, the dynamic stiffness matrix for a horizontally circular curved member, is given
by

SII S12 SI3 S14 SIS S16

S21 S22 S23 S24 S2S S26

S=
S31 S32 S33 S34 S3S S36 _(EI) _I (42)
S41 S42 S43 S44 S4S S46 - R3 BA .

SSl SS2 SS3 SS4 SSS SS6

S61 ~62 S63 S64 S6S S66

4. NUMERICAL EXAMPLE

A three-span symmetrical circular curved beam A-B-C-D of constant section
undergoing out-of-plane vibrations as shown in Fig. 4 is analyzed for natural frequencies.
The beam is resting on rigid, non-twisting supports equally spaced at an angle rx. with the
two extreme ends A and D hinged.
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Fig. 4. Three-span circular curved beam.
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Since no deflection or twist is allowed at the joints, each joint will have a rotation only.
The equilibrium conditions at joints A, B, C and D give

From eqns (41) and (42) we have

(44)

Upon substituting eqns (44) into eqns (43), a system of simultaneous equations in the
following matrix form is obtained:

[

::: SII S;S22 S~1 ~ ][:;~] ==[~J' (45)o S21 SII +S22 $12 'I'cR 0
o 0 $21 S22 'l'oR 0

Setting the determinant of die stiffness matrix in eqn (45) to zero gives the frequency
equation as

Sll S12 0 0
$21 $11 + S22 SI2 0 =0.0 $21 SII + $22 $12

0 0 $21 $22

(46)

For a given curved beam with rand $ known, the values of b can be computed from
eqn (46). In order to show the effects of shear deformation, rotary inertia and the opening
angle of the arc on the natural frequencies of the beam, the values of p and k are assumed
to be 0.77 and 0.89, respectively, for a beam of solid circular section with Poisson's ratio
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Fig. 5. Variation of b with IX for a three-span curved beam. --, r = 0; ----, r = 0.05.

J.l = 0.3[15]. Thus sir = JEI{kG) ~ 1.7. The results of b vs IX for r =0 and 0.5 for the first
five modes, with IX varying from 30 to 90°, are plotted in Fig. 5.

5. CONCLUSIONS

The general matrix formulation for out-of-plane vibrations ofcircular curved members,
including the effects of shear deformation and rotary inertia, has been presented for use
in the determination of the natural frequencies of continuous curved beams. A three-span
curved beam undergoing out-of-plane free vibrations is given to illustrate the application
of the proposed method. From the results shown in Fig. 5, it is seen that the effects of
shear deformation and rotary inertia are more important with increasing mode numbers
and decreasing opening angles of the arc. For high modes the curves indicate that an
increase in reduction of the ratio of natural frequencies between r =0 and r =0.5 as high
as 40% is possible.
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